Attribute knowledge integration for speech recognition based on multi-task learning neural networks
نویسندگان
چکیده
It has been demonstrated that the speech recognition performance can be improved by adding extra articulatory information, and subsequently, how to use such information effectively becomes a challenging problem. In this paper, we propose an attribute-based knowledge integration architecture which is realized by modeling and learning both acoustic and articulatory cues simultaneously in a uniform framework. The framework promotes the performance by providing attribute-based knowledge in both feature and model domains. In model domain, the attribute classification is used as the secondary task to improve the performance of an MTL-DNN used for speech recognition by lifting the discriminative ability on pronunciation. In feature domain, an attribute-based feature is extracted from an MTL-DNN trained with attribute classification as its primary task and phonetic/tri-phone state classification as the secondary task. Experiments on TIMIT and WSJ corpuses show that the proposed framework achieves significant performance improvements compared with the baseline DNN-HMM systems.
منابع مشابه
Improving Large Vocabulary Accented Mandarin Speech Recognition with Attribute-Based I-Vectors
It has been well-recognized that the accent has a great impact on the ASR of Chinese Mandarin, therefore, how to improve the performance on the accented speech has become a critical issue in this field. The attribute feature has been proven effective on modelling accented speech, resulting in a significantly improved performance in accent recognition. In this paper, we propose an attribute-base...
متن کاملSpeech enhancement and recognition using multi-task learning of long short-term memory recurrent neural networks
Long Short-Term Memory (LSTM) recurrent neural network has proven effective in modeling speech and has achieved outstanding performance in both speech enhancement (SE) and automatic speech recognition (ASR). To further improve the performance of noise-robust speech recognition, a combination of speech enhancement and recognition was shown to be promising in earlier work. This paper aims to expl...
متن کاملEffect of sound classification by neural networks in the recognition of human hearing
In this paper, we focus on two basic issues: (a) the classification of sound by neural networks based on frequency and sound intensity parameters (b) evaluating the health of different human ears as compared to of those a healthy person. Sound classification by a specific feed forward neural network with two inputs as frequency and sound intensity and two hidden layers is proposed. This process...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملAn artificial Neural Network approach to monitor and diagnose multi-attribute quality control processes
One of the existing problems of multi-attribute process monitoring is the occurrence of high number of false alarms (Type I error). Another problem is an increase in the probability of not detecting defects when the process is monitored by a set of independent uni-attribute control charts. In this paper, we address both of these problems and consider monitoring correlated multi-attributes proce...
متن کامل